Refine
Year of publication
Document Type
- Doctoral Thesis (799) (remove)
Language
- German (480)
- English (308)
- Multiple languages (7)
- French (4)
Keywords
- Stress (37)
- Deutschland (29)
- Fernerkundung (17)
- Modellierung (17)
- Hydrocortison (16)
- Optimierung (16)
- stress (15)
- Stressreaktion (12)
- cortisol (12)
- Motivation (11)
Institute
- Psychologie (181)
- Geographie und Geowissenschaften (148)
- Mathematik (62)
- Wirtschaftswissenschaften (60)
- Fachbereich 4 (47)
- Geschichte, mittlere und neuere (28)
- Germanistik (26)
- Informatik (26)
- Fachbereich 1 (23)
- Kunstgeschichte (22)
Statistical matching offers a way to broaden the scope of analysis without increasing respondent burden and costs. These would result from conducting a new survey or adding variables to an existing one. Statistical matching aims at combining two datasets A and B referring to the same target population in order to analyse variables, say Y and Z, together, that initially were not jointly observed. The matching is performed based on matching variables X that correspond to common variables present in both datasets A and B. Furthermore, Y is only observed in B and Z is only observed in A. To overcome the fact that no joint information on X, Y and Z is available, statistical matching procedures have to rely on suitable assumptions. Therefore, to yield a theoretical foundation for statistical matching, most procedures rely on the conditional independence assumption (CIA), i.e. given X, Y is independent of Z.
The goal of this thesis is to encompass both the statistical matching process and the analysis of the matched dataset. More specifically, the aim is to estimate a linear regression model for Z given Y and possibly other covariates in data A. Since the validity of the assumptions underlying the matching process determine the validity of the obtained matched file, the accuracy of statistical inference is determined by the suitability of the assumptions. By putting the focus on these assumptions, this work proposes a systematic categorisation of approaches to statistical matching by relying on graphical representations in form of directed acyclic graphs. These graphs are particularly useful in representing dependencies and independencies which are at the heart of the statistical matching problem. The proposed categorisation distinguishes between (a) joint modelling of the matching and the analysis (integrated approach), and (b) matching subsequently followed by statistical analysis of the matched dataset (classical approach). Whereas the classical approach relies on the CIA, implementations of the integrated approach are only valid if they converge, i.e. if the specified models are identifiable and, in the case of MCMC implementations, if the algorithm converges to a proper distribution.
In this thesis an implementation of the integrated approach is proposed, where the imputation step and the estimation step are jointly modelled through a fully Bayesian MCMC estimation. It is based on a linear regression model for Z given Y and accounts for both a linear regression model and a random effects model for Y. Furthermore, it yields its validity when the instrumental variable assumption (IVA) holds. The IVA corresponds to: (a) Z is independent of a subset X’ of X given Y and X*, where X* = X\X’ and (b) Y is correlated with X’ given X*. The proof, that the joint Bayesian modelling of both the model for Z and the model for Y through an MCMC simulation converges to a proper distribution is provided in this thesis. In a first model-based simulation study, the proposed integrated Bayesian procedure is assessed with regard to the data situation, convergence issues, and underlying assumptions. Special interest lies in the investigation of the interplay of the Y and the Z model within the imputation process. It turns out that failure scenarios can be distinguished by comparing the CIA and the IVA in the completely observed dataset.
Finally, both approaches to statistical matching, i.e. the classical approach and the integrated approach, are subject to an extensive comparison in (1) a model-based simulation study and (2) a simulation study based on the AMELIA dataset, which is an openly available very large synthetic dataset and, by construction, similar to the EU-SILC survey. As an additional integrated approach, a Bayesian additive regression trees (BART) model is considered for modelling Y. These integrated procedures are compared to the classical approach represented by predictive mean matching in the form of multiple imputations by chained equation. Suitably chosen, the first simulation framework offers the possibility to clarify aspects related to the underlying assumptions by comparing the IVA and the CIA and by evaluating the impact of the matching variables. Thus, within this simulation study two related aspects are of special interest: the assumptions underlying each method and the incorporation of additional matching variables. The simulation on the AMELIA dataset offers a close-to-reality framework with the advantage of knowing the whole setting, i.e. the whole data X, Y and Z. Special interest lies in investigating assumptions through adding and excluding auxiliary variables in order to enhance conditional independence and assess the sensitivity of the methods to this issue. Furthermore, the benefit of having an overlap of units in data A and B for which information on X, Y, Z is available is investigated. It turns out that the integrated approach yields better results than the classical approach when the CIA clearly does not hold. Moreover, even when the classical approach obtains unbiased results for the regression coefficient of Y in the model for Z, it is the method relying on BART that over all coefficients performs best.
Concluding, this work constitutes a major contribution to the clarification of assumptions essential to any statistical matching procedure. By introducing graphical models to identify existing approaches to statistical matching combined with the subsequent analysis of the matched dataset, it offers an extensive overview, categorisation and extension of theory and application. Furthermore, in a setting where none of the assumptions are testable (since X, Y and Z are not observed together), the integrated approach is a valuable asset by offering an alternative to the CIA.
Insekten stellen die artenreichste Klasse des Tierreichs dar, wobei viele der Arten bedroht sind. Das liegt neben dem Klimawandel vor allem an der sich in den letzten Jahrzehnten stark verändernden landwirtschaftlichen Nutzung von Flächen, was zu Lebensraumzerstörung und Habitatfragmentierung führt. Die intensivere Bewirtschaftung von Gunstflächen einerseits, sowie die Flächenaufgabe unrentabler Flächen andererseits, hat schwerwiegende Folgen für Insekten, die an extensiv genutzte Kulturflächen angepasst sind, was besonders durch den abnehmenden Anteil an Spezialisten deutlich wird. Eine Region, die aufgrund des kleinräumigen Nebeneinanders von naturnahen Bereichen und anthropogen geschaffenen Kulturflächen (entlang eines großen Höhengradienten) eine wichtige Rolle für die Biodiversität besitzt, speziell als Lebensraum für Spezialisten aller Artengruppen, sind die Alpen. Auch hier stellt der landwirtschaftliche Nutzungswandel ein großes Problem dar, weshalb es einen nachhaltigen Schutz der extensiv genutzten Kulturlebensräume bedarf. Um zu klären, wie eine nachhaltige Berglandwirtschaft zukünftig erhalten bleiben kann, wurden im ersten Kapitel der Promotion die Regelungsrahmen der internationalen, europäischen, nationalen und regionalen Gesetze näher betrachtet. Es zeigt sich, dass der multifunktionale Ansatz der Alpenkonvention und des zugehörigen Protokolls „Berglandwirtschaft“ nur eine geringe normative Konkretisierung aufweisen und daher nicht im ausreichenden Maße in der Gemeinsamen Agrarpolitik der EU sowie im nationalen Recht umgesetzt werden; dadurch können diese einer negativen Entwicklung in der Berglandwirtschaft nicht ausreichend entgegenwirken. Neben diesen Rechtsgrundlagen fehlt es jedoch auch an naturwissenschaftlichen Grundlagen, um die Auswirkungen des landwirtschaftlichen Nutzungswandels auf alpine und arktische Tierarten zu beurteilen. Untersuchungen mit Charakterarten für diese Kulturräume sind somit erforderlich, wobei Tagfalter aufgrund ihrer Sensibilität gegenüber Umweltveränderungen geeignete Indikatoren sind. Deshalb wurden im zweiten Kapitel der Promotion die beiden Schwestertaxa Boloria pales und B. napaea untersucht, die für arktische und / oder alpine Grünlandflächen typisch sind. Die bisher unbekannte Phylogeographie beider Arten wurde daher mit zwei mitochondrialen und zwei Kerngenen über das gesamte europäische Verbreitungsgebiet untersucht. In diesem Zusammenhang die zwischen- und innerartlichen Auftrennungen analysiert und datiert sowie die ihnen unterliegenden Ausbreitungsmuster entschlüsselt. Um spezielle Anpassungsformen an die arktischen und alpinen Lebensräume der Arten zu entschlüsseln und die Folgen der landwirtschaftlichen Nutzungsänderung richtig einordnen zu können, wurden mehrere Populationen beider Arten freilandökologisch untersucht. Während B. pales über den gesamten alpinen Sommer schlüpfen kann und proterandrische Strukturen zeigt, ist B. napaea durch das Fehlen der Proterandie und ein verkürztes Schlupfzeitfenster eher an die kürzeren, arktischen Sommer angepasst. Obwohl beide Arten die gleichen Nektarquellen nutzen, gibt es aufgrund verschiedener Bedürfnisse Unterschiede in den Nektarpräferenzen zwischen den Geschlechtern; auch innerartliche Unterschiede im Dispersionsverhalten wurden gefunden. Populationen beider Arten können eine kurze Beweidung überleben, wobei der Zeitpunkt der Beweidung von Bedeutung ist; eine Nutzung gegen Ende der Schlupfphase hat einen größeren Einfluss auf die Population. Daneben wurde ein deutlicher Unterschied zwischen Flächen mit langfristiger und fehlender Beweidung gefunden. Neben einer geringen Populationsdichte, gibt es auf ganzjährig beweideten Flächen einen größeren Druck, den Lebensraum zu verlassen und die zurückgelegten Flugdistanzen sind hier auch deutlich größer.
Der digitale Fortschritt der vergangenen Jahrzehnte beruht zu einem großen Teil auf der Innovationskraft junger aufstrebender Unternehmen. Während diese Unternehmen auf der einen Seite ihr hohes Maß an Innovativität eint, entsteht für diese zeitgleich auch ein hoher Bedarf an finanziellen Mitteln, um ihre geplanten Innovations- und Wachstumsziele auch in die Tat umsetzen zu können. Da diese Unternehmen häufig nur wenige bis keine Unternehmenswerte, Umsätze oder auch Profitabilität vorweisen können, gestaltet sich die Aufnahme von externem Kapital häufig schwierig bis unmöglich. Aus diesem Umstand entstand in der Mitte des zwanzigsten Jahrhunderts das Geschäftsmodell der Risikofinanzierung, des sogenannten „Venture Capitals“. Dabei investieren Risikokapitalgeber in aussichtsreiche junge Unternehmen, unterstützen diese in ihrem Wachstum und verkaufen nach einer festgelegten Dauer ihre Unternehmensanteile, im Idealfall zu einem Vielfachen ihres ursprünglichen Wertes. Zahlreiche junge Unternehmen bewerben sich um Investitionen dieser Risikokapitalgeber, doch nur eine sehr geringe Zahl erhält diese auch. Um die aussichtsreichsten Unternehmen zu identifizieren, sichten die Investoren die Bewerbungen anhand verschiedener Kriterien, wodurch bereits im ersten Schritt der Bewerbungsphase zahlreiche Unternehmen aus dem Kreis potenzieller Investmentobjekte ausscheiden. Die bisherige Forschung diskutiert, welche Kriterien Investoren zu einer Investition bewegen. Daran anschließend verfolgt diese Dissertation das Ziel, ein tiefergehendes Verständnis darüber zu erlangen, welche Faktoren die Entscheidungsfindung der Investoren beeinflussen. Dabei wird vor allem auch untersucht, wie sich persönliche Faktoren der Investoren, sowie auch der Unternehmensgründer, auf die Investitionsentscheidung auswirken. Ergänzt werden diese Untersuchungen zudem durch die Analyse der Wirkung des digitalen Auftretens von Unternehmensgründern auf die Entscheidungsfindung von Risikokapitalgebern. Des Weiteren verfolgt diese Dissertation als zweites Ziel einen Erkenntnisgewinn über die Auswirkungen einer erfolgreichen Investition auf den Unternehmensgründer. Insgesamt umfasst diese Dissertation vier Studien, die im Folgenden näher beschrieben werden.
In Kapitel 2 wird untersucht, inwiefern sich bestimmte Humankapitaleigenschaften des Investors auf dessen Entscheidungsverhalten auswirken. Mithilfe vorangegangener Interviews und Literaturrecherchen wurden insgesamt sieben Kriterien identifiziert, die Risikokapitalinvestoren in ihrer Entscheidungsfindung nutzen. Daraufhin nahmen 229 Investoren an einem Conjoint Experiment teil, mithilfe dessen gezeigt werden konnte, wie wichtig die jeweiligen Kriterien im Rahmen der Entscheidung sind. Von besonderem Interesse ist dabei, wie sich die Wichtigkeit der Kriterien in Abhängigkeit der Humankapitaleigenschaften der Investoren unterscheiden. Dabei kann gezeigt werden, dass sich die Wichtigkeit der Kriterien je nach Bildungshintergrund und Erfahrung der Investoren unterscheidet. So legen beispielsweise Investoren mit einem höheren Bildungsabschluss und Investoren mit unternehmerischer Erfahrung deutlich mehr Wert auf die internationale Skalierbarkeit der Unternehmen. Zudem unterscheidet sich die Wichtigkeit der Kriterien auch in Abhängigkeit der fachlichen Ausbildung. So legen etwa Investoren mit einer fachlichen Ausbildung in Naturwissenschaften einen deutlich stärkeren Fokus auf den Mehrwert des Produktes beziehungsweise der Dienstleistung. Zudem kann gezeigt werden, dass Investoren mit mehr Investitionserfahrung die Erfahrung des Managementteams wesentlich wichtiger einschätzen als Investoren mit geringerer Investitionserfahrung. Diese Ergebnisse ermöglichen es Unternehmensgründern ihre Bewerbungen um eine Risikokapitalfinanzierung zielgenauer auszurichten, etwa durch eine Analyse des beruflichen Hintergrunds der potentiellen Investoren und eine damit einhergehende Anpassung der Bewerbungsunterlagen, zum Beispiel durch eine stärkere Schwerpunktsetzung besonders relevanter Kriterien.
Die in Kapitel 3 vorgestellte Studie bedient sich der Daten des gleichen Conjoint Experiments aus Kapitel 2, legt hierbei allerdings einen Fokus auf den Unterschied zwischen Investoren aus den USA und Investoren aus Kontinentaleuropa. Dazu wurden Subsamples kreiert, in denen 128 Experimentteilnehmer in den USA angesiedelt sind und 302 in Kontinentaleuropa. Die Analyse der Daten zeigt, dass US-amerikanische Investoren, im Vergleich zu Investoren in Kontinentaleuropa, einen signifikant stärkeren Fokus auf das Umsatzwachstum der Unternehmen legen. Zudem legen kontinentaleuropäische Investoren einen deutlich stärkeren Fokus auf die internationale Skalierbarkeit der Unternehmen. Um die Ergebnisse der Analyse besser interpretieren zu können, wurden diese im Anschluss mit vier amerikanischen und sieben europäischen Investoren diskutiert. Dabei bestätigen die europäischen Investoren die Wichtigkeit der hohen internationalen Skalierbarkeit aufgrund der teilweise geringen Größe europäischer Länder und dem damit zusammenhängenden Zwang, schnell international skalieren zu können, um so zufriedenstellende Wachstumsraten zu erreichen. Des Weiteren wurde der vergleichsweise geringere Fokus auf das Umsatzwachstum in Europa mit fehlenden Mitteln für eine schnelle Expansion begründet. Gleichzeitig wird der starke Fokus der US-amerikanischen Investoren auf Umsatzwachstum mit der höheren Tendenz zu einem Börsengang in den USA begründet, bei dem hohe Umsätze als Werttreiber dienen. Die Ergebnisse dieses Kapitels versetzen Unternehmensgründer in die Lage, ihre Bewerbung stärker an die wichtigsten Kriterien der potenziellen Investoren auszurichten, um so die Wahrscheinlichkeit einer erfolgreichen Investitionsentscheidung zu erhöhen. Des Weiteren bieten die Ergebnisse des Kapitels Investoren, die sich an grenzüberschreitenden syndizierten Investitionen beteiligen, die Möglichkeit, die Präferenzen der anderen Investoren besser zu verstehen und die Investitionskriterien besser auf potenzielle Partner abzustimmen.
Kapitel 4 untersucht ob bestimmte Charaktereigenschaften des sogenannten Schumpeterschen Entrepreneurs einen Einfluss auf die Wahrscheinlichkeit eines zweiten Risikokapitalinvestments haben. Dazu wurden von Gründern auf Twitter gepostete Nachrichten sowie Information von Investitionsrunden genutzt, die auf der Plattform Crunchbase zur Verfügung stehen. Insgesamt wurden mithilfe einer Textanalysesoftware mehr als zwei Millionen Tweets von 3313 Gründern analysiert. Die Ergebnisse der Studie deuten an, dass einige Eigenschaften, die typisch für Schumpetersche Gründer sind, die Chancen für eine weitere Investition erhöhen, während andere keine oder negative Auswirkungen haben. So erhöhen Gründer, die auf Twitter einen starken Optimismus sowie ihre unternehmerische Vision zur Schau stellen die Chancen auf eine zweite Risikokapitalfinanzierung, gleichzeitig werden diese aber durch ein zu starkes Streben nach Erfolg reduziert. Diese Ergebnisse haben eine hohe praktische Relevanz für Unternehmensgründer, die sich auf der Suche nach Risikokapital befinden. Diese können dadurch ihr virtuelles Auftreten („digital identity“) zielgerichteter steuern, um so die Wahrscheinlichkeit einer weiteren Investition zu erhöhen.
Abschließend wird in Kapitel 5 untersucht, wie sich die digitale Identität der Gründer verändert, nachdem diese eine erfolgreiche Risikokapitalinvestition erhalten haben. Dazu wurden sowohl Twitter-Daten als auch Crunchbase-Daten genutzt, die im Rahmen der Erstellung der Studie in Kapitel 4 erhoben wurden. Mithilfe von Textanalyse und Paneldatenregressionen wurden die Tweets von 2094 Gründern vor und nach Erhalt der Investition untersucht. Dabei kann gezeigt werden, dass der Erhalt einer Risikokapitalinvestition das Selbstvertrauen, die positiven Emotionen, die Professionalisierung und die Führungsqualitäten der Gründer erhöhen. Gleichzeitig verringert sich allerdings die Authentizität der von den Gründern verfassten Nachrichten. Durch die Verwendung von Interaktionseffekten kann zudem gezeigt werden, dass die Steigerung des Selbstvertrauens positiv durch die Reputation des Investors moderiert wird, während die Höhe der Investition die Authentizität negativ moderiert. Investoren haben durch diese Erkenntnisse die Möglichkeit, den Weiterentwicklungsprozess der Gründer nach einer erfolgreichen Investition besser nachvollziehen zu können, wodurch sie in die Lage versetzt werden, die Aktivitäten ihrer Gründer auf Social Media Plattformen besser zu kontrollieren und im Bedarfsfall bei ihrer Anpassung zu unterstützen.
Die in den Kapiteln 2 bis 5 vorgestellten Studien dieser Dissertation tragen damit zu einem besseren Verständnis der Entscheidungsfindung im Venture Capital Prozess bei. Der bisherige Stand der Forschung wird um Erkenntnisse erweitert, die sowohl den Einfluss der Eigenschaften der Investoren als auch der Gründer betreffen. Zudem wird auch gezeigt, wie sich die Investition auf den Gründer selbst auswirken kann. Die Implikationen der Ergebnisse, sowie Limitationen und Möglichkeiten künftiger Forschung werden in Kapitel 6 näher beschrieben. Da die in dieser Dissertation verwendeten Methoden und Daten erst seit wenigen Jahren im Kontext der Venture Capital Forschung genutzt werden, beziehungsweise überhaupt verfügbar sind, bietet sie sich als eine Grundlage für weitere Forschung an.
For decades, academics and practitioners aim to understand whether and how (economic) events affect firm value. Optimally, these events occur exogenously, i.e. suddenly and unexpectedly, so that an accurate evaluation of the effects on firm value can be conducted. However, recent studies show that even the evaluation of exogenous events is often prone to many challenges that can lead to diverse interpretations, resulting in heated debates. Recently, there have been intense debates in particular on the impact of takeover defenses and of Covid-19 on firm value. The announcements of takeover defenses and the propagation of Covid-19 are exogenous events that occur worldwide and are economically important, but have been insufficiently examined. By answering open research questions, this dissertation aims to provide a greater understanding about the heterogeneous effects that exogenous events such as the announcements of takeover defenses and the propagation of Covid-19 have on firm value. In addition, this dissertation analyzes the influence of certain firm characteristics on the effects of these two exogenous events and identifies influencing factors that explain contradictory results in the existing literature and thus can reconcile different views.
In common shape optimization routines, deformations of the computational mesh
usually suffer from decrease of mesh quality or even destruction of the mesh.
To mitigate this, we propose a theoretical framework using so-called pre-shape
spaces. This gives an opportunity for a unified theory of shape optimization, and of
problems related to parameterization and mesh quality. With this, we stay in the
free-form approach of shape optimization, in contrast to parameterized approaches
that limit possible shapes. The concept of pre-shape derivatives is defined, and
according structure and calculus theorems are derived, which generalize classical
shape optimization and its calculus. Tangential and normal directions are featured
in pre-shape derivatives, in contrast to classical shape derivatives featuring only
normal directions on shapes. Techniques from classical shape optimization and
calculus are shown to carry over to this framework, and are collected in generality
for future reference.
A pre-shape parameterization tracking problem class for mesh quality is in-
troduced, which is solvable by use of pre-shape derivatives. This class allows for
non-uniform user prescribed adaptations of the shape and hold-all domain meshes.
It acts as a regularizer for classical shape objectives. Existence of regularized solu-
tions is guaranteed, and corresponding optimal pre-shapes are shown to correspond
to optimal shapes of the original problem, which additionally achieve the user pre-
scribed parameterization.
We present shape gradient system modifications, which allow simultaneous nu-
merical shape optimization with mesh quality improvement. Further, consistency
of modified pre-shape gradient systems is established. The computational burden
of our approach is limited, since additional solution of possibly larger (non-)linear
systems for regularized shape gradients is not necessary. We implement and com-
pare these pre-shape gradient regularization approaches for a 2D problem, which
is prone to mesh degeneration. As our approach does not depend on the choice of
forms to represent shape gradients, we employ and compare weak linear elasticity
and weak quasilinear p-Laplacian pre-shape gradient representations.
We also introduce a Quasi-Newton-ADM inspired algorithm for mesh quality,
which guarantees sufficient adaption of meshes to user specification during the rou-
tines. It is applicable in addition to simultaneous mesh regularization techniques.
Unrelated to mesh regularization techniques, we consider shape optimization
problems constrained by elliptic variational inequalities of the first kind, so-called
obstacle-type problems. In general, standard necessary optimality conditions cannot
be formulated in a straightforward manner for such semi-smooth shape optimization
problems. Under appropriate assumptions, we prove existence and convergence of
adjoints for smooth regularizations of the VI-constraint. Moreover, we derive shape
derivatives for the regularized problem and prove convergence to a limit object.
Based on this analysis, an efficient optimization algorithm is devised and tested
numerically.
All previous pre-shape regularization techniques are applied to a variational
inequality constrained shape optimization problem, where we also create customized
targets for increased mesh adaptation of changing embedded shapes and active set
boundaries of the constraining variational inequality.
Hybrid Modelling in general, describes the combination of at least two different methods to solve one specific task. As far as this work is concerned, Hybrid Models describe an approach to combine sophisticated, well-studied mathematical methods with Deep Neural Networks to solve parameter estimation tasks. To combine these two methods, the data structure of artifi- cially generated acceleration data of an approximate vehicle model, the Quarter-Car-Model, is exploited. Acceleration of individual components within a coupled dynamical system, can be described as a second order ordinary differential equation, including velocity and dis- placement of coupled states, scaled by spring - and damping-coefficient of the system. An appropriate numerical integration scheme can then be used to simulate discrete acceleration profiles of the Quarter-Car-Model with a random variation of the parameters of the system. Given explicit knowledge about the data structure, one can then investigate under which con- ditions it is possible to estimate the parameters of the dynamical system for a set of randomly generated data samples. We test, if Neural Networks are capable to solve parameter estima- tion problems in general, or if they can be used to solve several sub-tasks, which support a state-of-the-art parameter estimation method. Hybrid Models are presented for parameter estimation under uncertainties, including for instance measurement noise or incompleteness of measurements, which combine knowledge about the data structure and several Neural Networks for robust parameter estimation within a dynamical system.
Zeitgleich mit stetig wachsenden gesellschaftlichen Herausforderungen haben im vergangenen Jahrzehnt Sozialunternehmen stark an Bedeutung gewonnen. Sozialunternehmen verfolgen das Ziel, mit unternehmerischen Mitteln gesellschaftliche Probleme zu lösen. Da der Fokus von Sozialunternehmen nicht hauptsächlich auf der eigenen Gewinnmaximierung liegt, haben sie oftmals Probleme, geeignete Unternehmensfinanzierungen zu erhalten und Wachstumspotenziale zu verwirklichen.
Zur Erlangung eines tiefergehenden Verständnisses des Phänomens der Sozialunternehmen untersucht der erste Teil dieser Dissertation anhand von zwei Studien auf der Basis eines Experiments das Entscheidungsverhalten der Investoren von Sozialunternehmen. Kapitel 2 betrachtet daher das Entscheidungsverhalten von Impact-Investoren. Der von diesen Investoren verfolgte Investmentansatz „Impact Investing“ geht über eine reine Orientierung an Renditen hinaus. Anhand eines Experiments mit 179 Impact Investoren, die insgesamt 4.296 Investitionsentscheidungen getroffen haben, identifiziert eine Conjoint-Studie deren wichtigste Entscheidungskriterien bei der Auswahl der Sozialunternehmen. Kapitel 3 analysiert mit dem Fokus auf sozialen Inkubatoren eine weitere spezifische Gruppe von Unterstützern von Sozialunternehmen. Dieses Kapitel veranschaulicht auf der Basis des Experiments die Motive und Entscheidungskriterien der Inkubatoren bei der Auswahl von Sozialunternehmen sowie die von ihnen angebotenen Formen der nichtfinanziellen Unterstützung. Die Ergebnisse zeigen unter anderem, dass die Motive von sozialen Inkubatoren bei der Unterstützung von Sozialunternehmen unter anderem gesellschaftlicher, finanzieller oder reputationsbezogener Natur sind.
Der zweite Teil erörtert auf der Basis von zwei quantitativ empirischen Studien, inwiefern die Registrierung von Markenrechten sich zur Messung sozialer Innovationen eignet und mit finanziellem und sozialem Wachstum von sozialen Startups in Verbindung steht. Kapitel 4 erörtert, inwiefern Markenregistrierungen zur Messung von sozialen Innovationen dienen können. Basierend auf einer Textanalyse der Webseiten von 925 Sozialunternehmen (> 35.000 Unterseiten) werden in einem ersten Schritt vier Dimensionen sozialer Innovationen (Innovations-, Impact-, Finanz- und Skalierbarkeitsdimension) ermittelt. Darauf aufbauend betrachtet dieses Kapitel, wie verschiedene Markencharakteristiken mit den Dimensionen sozialer Innovationen zusammenhängen. Die Ergebnisse zeigen, dass insbesondere die Anzahl an registrierten Marken als Indikator für soziale Innovationen (alle Dimensionen) dient. Weiterhin spielt die geografische Reichweite der registrierten Marken eine wichtige Rolle. Aufbauend auf den Ergebnissen von Kapitel 4 untersucht Kapitel 5 den Einfluss von Markenregistrierungen in frühen Unternehmensphasen auf die weitere Entwicklung der hybriden Ergebnisse von sozialen Startups. Im Detail argumentiert Kapitel 5, dass sowohl die Registrierung von Marken an sich als auch deren verschiedene Charakteristiken unterschiedlich mit den sozialen und ökonomischen Ergebnissen von sozialen Startups in Verbindung stehen. Anhand eines Datensatzes von 485 Sozialunternehmen zeigen die Analysen aus Kapitel 5, dass soziale Startups mit einer registrierten Marke ein vergleichsweise höheres Mitarbeiterwachstum aufweisen und einen größeren gesellschaftlichen Beitrag leisten.
Die Ergebnisse dieser Dissertation weiten die Forschung im Social Entrepreneurship-Bereich weiter aus und bieten zahlreiche Implikationen für die Praxis. Während Kapitel 2 und 3 das Verständnis über die Eigenschaften von nichtfinanziellen und finanziellen Unterstützungsorganisationen von Sozialunternehmen vergrößern, schaffen Kapitel 4 und 5 ein größeres Verständnis über die Bedeutung von Markenanmeldungen für Sozialunternehmen.
Die Effekte diverser Hormone auf das Sozialverhalten von Männern und Frauen sind nicht vollständig geklärt, da eine genaue Messung dieser, sowie eine Ableitung kausaler Zusammenhänge, die Forschung seither vor Herausforderungen stellt. Umso wichtiger sind Studien, welche versuchen für konfundierende Aspekte zu kontrollieren und die hormonellen oder endokrinen Effekte auf das Sozialverhalten und die soziale Kognition zu untersuchen. Während Studien bereits Effekte von akutem Stress auf Sozialverhalten zeigten, sind die zugrundeliegenden neurobiologischen Mechanismen nicht vollständig bekannt, da hierfür ein rein pharmakologischer Ansatz von Nöten wäre. Die wenigen Studien, die einen solchen wählten, zeigen konträre Befunde. Bisherige Untersuchungen mit psychosozialen Stressoren lassen jedoch prosoziale Tendenzen nach Stress sowohl für Männer als auch für Frauen vermuten. Darüber hinaus sind auch Untersuchungen zu weiblichen Geschlechtshormonen und ihrem Einfluss auf Sozialverhalten sowie die soziale Kognition bei Frauen besonders herausfordernd durch die hormonellen Schwankungen während des Menstruationszyklus oder auch Veränderungen durch die Einnahme oraler Kontrazeptiva. Studien die sowohl Zyklusphasen als auch die Effekte von oralen Kontrazeptiva untersuchten, deuten aber bereits auf Unterschiede zwischen den verschiedenen Phasen, sowie Frauen mit natürlichem Zyklus und Einnahme oraler Kontrazeptiva hin.
Der theoretische Teil beschreibt die Grundlagen zur Stressreaktion des Menschen und die hormonellen Veränderungen weiblicher Geschlechtshormone. Folgend, soll ein Kapitel zur aktuellen Forschungslage zu Effekten von akutem Stress auf Sozialverhalten und die soziale Kognition einen Überblick über die bisherige Befundlage schaffen. Die erste empirische Studie, welche die Effekte von Hydrocortison auf das Sozialverhalten und die Emotionserkennung untersucht, soll anschließend in diese aktuelle Befundlage eingeordnet werden und zu der weniger erforschten Sparte der pharmakologischen Studien beitragen. Die zweite empirische Studie befasst sich folgend mit den Effekten weiblicher Geschlechtshormone auf Sozialverhalten und Empathie, genauer wie auch Zyklusphasen und orale Kontrazeptiva (über Hormone vermittelt) einen Einfluss bei Frauen nehmen. Abschließend sollen die Effekte von Stresshormonen bei Männern, und modulierende Eigenschaften weiblicher Geschlechtshormone, Zyklusphasen und oraler Kontrazeptiva bei Frauen, jeweils in Hinblick auf Sozialverhalten und die soziale Kognition diskutiert werden.
This thesis focus on threats as an experience of stress. Threats are distinguished from challenges and hindrances as another dimension of stress in challenge-hindrance models (CHM) of work stress (Tuckey et al., 2015). Multiple disciplines of psychology (e.g. stereotype, Fingerhut & Abdou, 2017; identity, Petriglieri, 2011) provide a variety of possible events that can trigger threats (e.g., failure expe-riences, social devaluation; Leary et al., 2009). However, systematic consideration of triggers and thus, an overview of when does the danger of threats arises, has been lacking to date. The explanation why events are appraised as threats is related to frustrated needs (e.g., Quested et al., 2011; Semmer et al., 2007), but empirical evidence is rare and needs can cover a wide range of content (e.g., relatedness, competence, power), depending on need approaches (e.g., Deci & Ryan, 2000; McClelland, 1961). This thesis aims to shed light on triggers (when) and the need-based mechanism (why) of threats.
In the introduction, I introduce threats as a dimension of stress experience (cf. Tuckey et al., 2015) and give insights into the diverse field of threat triggers (the when of threats). Further, I explain threats in terms of a frustrated need for positive self-view, before presenting specific needs as possible deter-minants in the threat mechanism (the why of threats). Study 1 represents a literature review based on 122 papers from interdisciplinary threat research and provides a classification of five triggers and five needs identified in explanations and operationalizations of threats. In Study 2, the five triggers and needs are ecologically validated in interviews with police officers (n = 20), paramedics (n = 10), teach-ers (n = 10), and employees of the German federal employment agency (n = 8). The mediating role of needs in the relationship between triggers and threats is confirmed in a correlative survey design (N = 101 Leaders working part-time, Study 3) and in a controlled laboratory experiment (N = 60 two-person student teams, Study 4). The thesis ends with a general discussion of the results of the four studies, providing theoretical and practical implications.
Forest inventories provide significant monitoring information on forest health, biodiversity,
resilience against disturbance, as well as its biomass and timber harvesting potential. For this
purpose, modern inventories increasingly exploit the advantages of airborne laser scanning (ALS)
and terrestrial laser scanning (TLS).
Although tree crown detection and delineation using ALS can be seen as a mature discipline, the
identification of individual stems is a rarely addressed task. In particular, the informative value of
the stem attributes—especially the inclination characteristics—is hardly known. In addition, a lack
of tools for the processing and fusion of forest-related data sources can be identified. The given
thesis addresses these research gaps in four peer-reviewed papers, while a focus is set on the
suitability of ALS data for the detection and analysis of tree stems.
In addition to providing a novel post-processing strategy for geo-referencing forest inventory plots,
the thesis could show that ALS-based stem detections are very reliable and their positions are
accurate. In particular, the stems have shown to be suited to study prevailing trunk inclination
angles and orientations, while a species-specific down-slope inclination of the tree stems and a
leeward orientation of conifers could be observed.