Refine
Year of publication
- 2021 (2) (remove)
Document Type
- Article (1)
- Contribution to a Periodical (1)
Keywords
- Arctic (1)
- Arktis (1)
- Atmosphärische Grenzschicht (1)
- Laptev Sea (1)
- Laptewsee (1)
- MODIS ice surface temperatures (1)
- Meereis (1)
- Modellierung (1)
- Oberflächentemperatur (1)
- SODAR/RASS (1)
Institute
In 2014/2015 a one-year field campaign at the Tiksi observatory in the Laptev Sea area was carried out using Sound Detection and Ranging/Radio Acoustic Sounding System (SODAR/RASS) measurements to investigate the atmospheric boundary layer (ABL) with a focus on low-level jets (LLJ) during the winter season. In addition to SODAR/RASS-derived vertical profiles of temperature, wind speed and direction, a suite of complementary measurements at the Tiksi observatory was available. Data of a regional atmospheric model were used to put the local data into the synoptic context. Two case studies of LLJ events are presented. The statistics of LLJs for six months show that in about 23% of all profiles LLJs were present with a mean jet speed and height of about 7 m/s and 240 m, respectively. In 3.4% of all profiles LLJs exceeding 10 m/s occurred. The main driving mechanism for LLJs seems to be the baroclinicity, since no inertial oscillations were found. LLJs with heights below 200 m are likely influenced by local topography.
The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.