900 Geschichte und Geografie
Refine
Year of publication
Document Type
- Article (29)
- Doctoral Thesis (11)
Keywords
- Modellierung (6)
- Satellitenfernerkundung (5)
- Fernerkundung (4)
- Luxemburg (3)
- MODIS (3)
- Meereis (3)
- Wald (3)
- Anpassung (2)
- Antarctic (2)
- Arctic (2)
Institute
Measurements of the atmospheric boundary layer (ABL) structure were performed for three years (October 2017–August 2020) at the Russian observatory “Ice Base Cape Baranova” (79.280° N, 101.620° E) using SODAR (Sound Detection And Ranging). These measurements were part of the YOPP (Year of Polar Prediction) project “Boundary layer measurements in the high Arctic” (CATS_BL) within the scope of a joint German–Russian project. In addition to SODAR-derived vertical profiles of wind speed and direction, a suite of complementary measurements at the observatory was available. ABL measurements were used for verification of the regional climate model COSMO-CLM (CCLM) with a 5 km resolution for 2017–2020. The CCLM was run with nesting in ERA5 data in a forecast mode for the measurement period. SODAR measurements were mostly limited to wind speeds <12 m/s since the signal was often lost for higher winds. The SODAR data showed a topographical channeling effect for the wind field in the lowest 100 m and some low-level jets (LLJs). The verification of the CCLM with near-surface data of the observatory showed good agreement for the wind and a negative bias for the 2 m temperature. The comparison with SODAR data showed a positive bias for the wind speed of about 1 m/s below 100 m, which increased to 1.5 m/s for higher levels. In contrast to the SODAR data, the CCLM data showed the frequent presence of LLJs associated with the topographic channeling in Shokalsky Strait. Although SODAR wind profiles are limited in range and have a lot of gaps, they represent a valuable data set for model verification. However, a full picture of the ABL structure and the climatology of channeling events could be obtained only with the model data. The climatological evaluation showed that the wind field at Cape Baranova was not only influenced by direct topographic channeling under conditions of southerly winds through the Shokalsky Strait but also by channeling through a mountain gap for westerly winds. LLJs were detected in 37% of all profiles and most LLJs were associated with channeling, particularly LLJs with a jet speed ≥ 15 m/s (which were 29% of all LLJs). The analysis of the simulated 10 m wind field showed that the 99%-tile of the wind speed reached 18 m/s and clearly showed a dipole structure of channeled wind at both exits of Shokalsky Strait. The climatology of channeling events showed that this dipole structure was caused by the frequent occurrence of channeling at both exits. Channeling events lasting at least 12 h occurred on about 62 days per year at both exits of Shokalsky Strait.
A model-based temperature adjustment scheme for wintertime sea-ice production retrievals from MODIS
(2022)
Knowledge of the wintertime sea-ice production in Arctic polynyas is an important requirement for estimations of the dense water formation, which drives vertical mixing in the upper ocean. Satellite-based techniques incorporating relatively high resolution thermal-infrared data from MODIS in combination with atmospheric reanalysis data have proven to be a strong tool to monitor large and regularly forming polynyas and to resolve narrow thin-ice areas (i.e., leads) along the shelf-breaks and across the entire Arctic Ocean. However, the selection of the atmospheric data sets has a large influence on derived polynya characteristics due to their impact on the calculation of the heat loss to the atmosphere, which is determined by the local thin-ice thickness. In order to overcome this methodical ambiguity, we present a MODIS-assisted temperature adjustment (MATA) algorithm that yields corrections of the 2 m air temperature and hence decreases differences between the atmospheric input data sets. The adjustment algorithm is based on atmospheric model simulations. We focus on the Laptev Sea region for detailed case studies on the developed algorithm and present time series of polynya characteristics in the winter season 2019/2020. It shows that the application of the empirically derived correction decreases the difference between different utilized atmospheric products significantly from 49% to 23%. Additional filter strategies are applied that aim at increasing the capability to include leads in the quasi-daily and persistence-filtered thin-ice thickness composites. More generally, the winter of 2019/2020 features high polynya activity in the eastern Arctic and less activity in the Canadian Arctic Archipelago, presumably as a result of the particularly strong polar vortex in early 2020.
Extension of an Open GEOBIA Framework for Spatially Explicit Forest Stratification with Sentinel-2
(2022)
Spatially explicit information about forest cover is fundamental for operational forest management and forest monitoring. Although open-satellite-based earth observation data in a spatially high resolution (i.e., Sentinel-2, ≤10 m) can cover some information needs, spatially very high-resolution imagery (i.e., aerial imagery, ≤2 m) is needed to generate maps at a scale suitable for regional and local applications. In this study, we present the development, implementation, and evaluation of a Geographic Object-Based Image Analysis (GEOBIA) framework to stratify forests (needleleaved, broadleaved, non-forest) in Luxembourg. The framework is exclusively based on open data and free and open-source geospatial software. Although aerial imagery is used to derive image objects with a 0.05 ha minimum size, Sentinel-2 scenes of 2020 are the basis for random forest classifications in different single-date and multi-temporal feature setups. These setups are compared with each other and used to evaluate the framework against classifications based on features derived from aerial imagery. The highest overall accuracies (89.3%) have been achieved with classification on a Sentinel-2-based vegetation index time series (n = 8). Similar accuracies have been achieved with classification based on two (88.9%) or three (89.1%) Sentinel-2 scenes in the greening phase of broadleaved forests. A classification based on color infrared aerial imagery and derived texture measures only achieved an accuracy of 74.5%. The integration of the texture measures into the Sentinel-2-based classification did not improve its accuracy. Our results indicate that high resolution image objects can successfully be stratified based on lower spatial resolution Sentinel-2 single-date and multi-temporal features, and that those setups outperform classifications based on aerial imagery only. The conceptual framework of spatially high-resolution image objects enriched with features from lower resolution imagery facilitates the delivery of frequent and reliable updates due to higher spectral and temporal resolution. The framework additionally holds the potential to derive additional information layers (i.e., forest disturbance) as derivatives of the features attached to the image objects, thus providing up-to-date information on the state of observed forests.
Soil organic matter (SOM) is an indispensable component of terrestrial ecosystems. Soil organic carbon (SOC) dynamics are influenced by a number of well-known abiotic factors such as clay content, soil pH, or pedogenic oxides. These parameters interact with each other and vary in their influence on SOC depending on local conditions. To investigate the latter, the dependence of SOC accumulation on parameters and parameter combinations was statistically assessed that vary on a local scale depending on parent material, soil texture class, and land use. To this end, topsoils were sampled from arable and grassland sites in south-western Germany in four regions with different soil parent material. Principal component analysis (PCA) revealed a distinct clustering of data according to parent material and soil texture that varied largely between the local sampling regions, while land use explained PCA results only to a small extent. The PCA clusters were differentiated into total clusters that contain the entire dataset or major proportions of it and local clusters representing only a smaller part of the dataset. All clusters were analysed for the relationships between SOC concentrations (SOC %) and mineral-phase parameters in order to assess specific parameter combinations explaining SOC and its labile fractions hot water-extractable C (HWEC) and microbial biomass C (MBC). Analyses were focused on soil parameters that are known as possible predictors for the occurrence and stabilization of SOC (e.g. fine silt plus clay and pedogenic oxides). Regarding the total clusters, we found significant relationships, by bivariate models, between SOC, its labile fractions HWEC and MBC, and the applied predictors. However, partly low explained variances indicated the limited suitability of bivariate models. Hence, mixed-effect models were used to identify specific parameter combinations that significantly explain SOC and its labile fractions of the different clusters. Comparing measured and mixed-effect-model-predicted SOC values revealed acceptable to very good regression coefficients (R2=0.41–0.91) and low to acceptable root mean square error (RMSE = 0.20 %–0.42 %). Thereby, the predictors and predictor combinations clearly differed between models obtained for the whole dataset and the different cluster groups. At a local scale, site-specific combinations of parameters explained the variability of organic carbon notably better, while the application of total models to local clusters resulted in less explained variance and a higher RMSE. Independently of that, the explained variance by marginal fixed effects decreased in the order SOC > HWEC > MBC, showing that labile fractions depend less on soil properties but presumably more on processes such as organic carbon input and turnover in soil.
The process of land degradation needs to be understood at various spatial and temporal scales in order to protect ecosystem services and communities directly dependent on it. This is especially true for regions in sub-Saharan Africa, where socio economic and political factors exacerbate ecological degradation. This study identifies spatially explicit land change dynamics in the Copperbelt province of Zambia in a local context using satellite vegetation index time series derived from the MODIS sensor. Three sets of parameters, namely, monthly series, annual peaking magnitude, and annual mean growing season were developed for the period 2000 to 2019. Trend was estimated by applying harmonic regression on monthly series and linear least square regression on annually aggregated series. Estimated spatial trends were further used as a basis to map endemic land change processes. Our observations were as follows: (a) 15% of the study area dominant in the east showed positive trends, (b) 3% of the study area dominant in the west showed negative trends, (c) natural regeneration in mosaic landscapes (post shifting cultivation) and land management in forest reserves were chiefly responsible for positive trends, and (d) degradation over intact miombo woodland and cultivation areas contributed to negative trends. Additionally, lower productivity over areas with semi-permanent agriculture and shift of new encroachment into woodlands from east to west of Copperbelt was observed. Pivot agriculture was not a main driver in land change. Although overall greening trends prevailed across the study site, the risk of intact woodlands being exposed to various disturbances remains high. The outcome of this study can provide insights about natural and assisted landscape restoration specifically addressing the miombo ecoregion.
Measurements of dust emissions and the modeling of dissipation dynamics and total values are related to great uncertainties. Agricultural activity, especially soil cultivation, may be an essential component to calculate and model local and regional dust dynamics and even connect to the global dust cycle. To budget total dust and to assess the impact of tillage, measurement of mobilized and transported dust is an essential but rare basis. In this study, a simple measurement concept with Modified Wilson and Cook samplers was applied for dust measurements on a small temporal and spatial scale on steep-slope vineyards in the Moselle area. Without mechanical impact, a mean horizontal flux of 0.01 g m2 min−1 was measured, while row tillage produced a mean horizontal flux of 5.92 g m2 min−1 of mobilized material and 4.18 g m2 min−1 emitted dust from site (=soil loss). Compared on this singular-event basis, emissions during tillage operations generated 99.89% of total emitted dust from the site under low mean wind velocities. The results also indicate a differing impact of specific cultivation operations, mulching, and tillage tools as well as the additional influence of environmental conditions, with highest emissions on dry soil and with additional wind impact. The dust source function is strongly associated with cultivation operations, implying highly dynamic but also regular and thus predictable and projectable emission peaks of total suspended particles. Detailed knowledge of the effects of mechanical impulses and reliable quantification of the local dust emission inventory are a basis for analysis of risk potential and choice of adequate management options.
The larval stage of the European fire salamander (Salamandra salamandra) inhabits both lentic and lotic habitats. In the latter, they are constantly exposed to unidirectional water flow, which has been shown to cause downstream drift in a variety of taxa. In this study, a closed artificial creek, which allowed us to keep the water flow constant over time and, at the same time, to simulates with predefined water quantities and durations, was used to examine the individual movement patterns of marked larval fire salamanders exposed to unidirectional flow. Movements were tracked by marking the larvae with VIAlpha tags individually and by using downstream and upstream traps. Most individuals showed stationarity, while downstream drift dominated the overall movement pattern. Upstream movements were rare and occurred only on small distances of about 30 cm; downstream drift distances exceeded 10 m (until next downstream trap). The simulated flood events increased drift rates significantly, even several days after the flood simulation experiments. Drift probability increased with decreasing body size and decreasing nutritional status. Our results support the production hypothesis as an explanation for the movements of European fire salamander larvae within creeks.
Low-level jets (LLJs) are climatological features in polar regions. It is well known that katabatic winds over the slopes of the Antarctic ice sheet are associated with strong LLJs. Barrier winds occurring, e.g., along the Antarctic Peninsula may also show LLJ structures. A few observational studies show that LLJs occur over sea ice regions. We present a model-based climatology of the wind field, of low-level inversions and of LLJs in the Weddell Sea region of the Antarctic for the period 2002–2016. The sensitivity of the LLJ detection on the selection of the wind speed maximum is investigated. The common criterion of an anomaly of at least 2 m/s is extended to a relative criterion of wind speed decrease above and below the LLJ. The frequencies of LLJs are sensitive to the choice of the relative criterion, i.e., if the value for the relative decrease exceeds 15%. The LLJs are evaluated with respect to the frequency distributions of height, speed, directional shear and stability for different regions. LLJs are most frequent in the katabatic wind regime over the ice sheet and in barrier wind regions. During winter, katabatic LLJs occur with frequencies of more than 70% in many areas. Katabatic LLJs show a narrow range of heights (mostly below 200 m) and speeds (typically 10–20 m/s), while LLJs over the sea ice cover a broad range of speeds and heights. LLJs are associated with surface inversions or low-level lifted inversions. LLJs in the katabatic wind and barrier wind regions can last several days during winter. The duration of LLJs is sensitive to the LLJ definition criteria. We propose to use only the absolute criterion for model studies.
Digital technologies have become central to social interaction and accessing goods and services. Development strategies and approaches to governance have increasingly deployed self-labelled ‘smart’ technologies and systems at various spatial scales, often promoted as rectifying social and geographic inequalities and increasing economic and environmental efficiencies. These have also been accompanied with similarly digitalized commercial and non-profit offers, particularly within the sharing economy. Concern has grown, however, over possible inequalities linked to their introduction. In this paper we critically analyse the role of sharing economies’ contribution to more inclusive, socially equitable
and spatially just transitions. Conceptually, this paper brings together literature on sharing economies, smart urbanism
and just transitions. Drawing on an explorative database of sharing initiatives within the cross-border region of Luxembourg and Germany, we discuss aspects of sustainability as they relate to distributive justice through spatial accessibility, intended benefits, and their operationalization. The regional analysis shows the diversity of sharing models, how they are appropriated in different ways and how intent and operationalization matter in terms of potential benefits.
Results emphasize the need for more fine-grained, qualitative research revealing who is, and is not, participating and
benefitting from sharing economies.
Amphibian diversity in the Amazonian floating meadows: a Hanski core-satellite species system
(2021)
The Amazon catchment is the largest river basin on earth, and up to 30% of its waters flow across floodplains. In its open waters, floating plants known as floating meadows abound. They can act as vectors of dispersal for their associated fauna and, therefore, can be important for the spatial structure of communities. Here, we focus on amphibian diversity in the Amazonian floating meadows over large spatial scales. We recorded 50 amphibian species over 57 sites, covering around 7000 km along river courses. Using multi-site generalised dissimilarity modelling of zeta diversity, we tested Hanski's core-satellite hypothesis and identified the existence of two functional groups of species operating under different ecological processes in the floating meadows. ‘Core' species are associated with floating meadows, while ‘satellite' species are associated with adjacent environments, being only occasional or accidental occupants of the floating vegetation. At large scales, amphibian diversity in floating meadows is mostly determined by stochastic (i.e. random/neutral) processes, whereas at regional scales, climate and deterministic (i.e. niche-based) processes are central drivers. Compared with the turnover of ‘core' species, the turnover of ‘satellite' species increases much faster with distances and is also controlled by a wider range of climatic features. Distance is not a limiting factor for ‘core' species, suggesting that they have a stronger dispersal ability even over large distances. This is probably related to the existence of passive long-distance dispersal of individuals along rivers via vegetation rafts. In this sense, Amazonian rivers can facilitate dispersal, and this effect should be stronger for species associated with riverine habitats such as floating meadows.